Sequential Model, Functional Model
✅ 딥러닝 모델 구조 보고 여러 방식으로 만들어 보기
import tensorflow as tf
Sequential Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(8, activation='relu', input_shape=(4,)))
model.add(Dense(16, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(10, activation='softmax')) # 10가지 정답을 가진 분류 모델
- dense_4 Param = 4 * 8 + 8 = 40
- dense_5 Param = 8 * 16 + 16 = 144
- dense_4 Param = 16 * 32 + 32 = 544
- dense_4 Param = 32 * 10 + 10 = 330
Functional Model
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
input_ = Input(shape=(4,))
x = Dense(8, activation='relu')(input_)
x = Dense(16, activation='relu')(x)
x = Dense(32, activation='relu')(x)
output_ = Dense(10, activation='softmax')(x)
model = Model(inputs=input_, outputs=output_)
- 파라미터 계산 값은 위의 Sequential Model 과 같다.
Model Concatenate using Functional
input_1 = Input(shape=(4,))
x1 = Dense(8, activation='relu')(input_1)
x1 = Dense(16, activation='relu')(x1)
output_1 = Model(inputs=input_1, outputs=x1)
input_2 = Input(shape=(8,))
x2 = Dense(8, activation='relu')(input_2)
output_2 = Model(inputs=input_2, outputs=x2)
x = tf.keras.layers.concatenate([output_1.output,output_2.output])
output_ = Dense(10, activation='softmax')(x)
model = Model(inputs=[output_1.input,output_2.input], outputs=output_)
- dense_16 = 4 * 8 + 8 = 40
- dense_17 = 8 * 16 + 16 =144
- dense_18 = 8 * 8 + 8 = 72
- dense_19 = 24 * 10 + 10 =250
'Data Science > Basic' 카테고리의 다른 글
온톨로지는 뭘까. (1) | 2025.02.02 |
---|---|
지표를 설계해보자 (1) | 2024.11.10 |
지표, 넌 누구니? (1) | 2024.10.27 |
Pytorch Tutorial (1) _ Tensor (0) | 2022.06.05 |
댓글